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The performance of a circular electrochemical wall shear rate probe under unsteady 
flow conditions is analysed through a combined experimental, numerical and 
analytical approach. The experiments are performed with a ferri- and ferrocyanide 
redox couple and compared to finite element analyses of the two-dimensional time- 
dependent convection-diffusion equation. The results are related to  the analytical 
LBvQque solution for steady flow and for some cases to Pedley’s model for heat 
transfer in reversing shear flow (Pedley 1976). 

The steady flow analyses showed that in our experiments axial diffusion is only of 
minor importance but that  for the lower PBclet numbers (< lo4) three-dimensional 
effects, like tangential diffusion, may not be neglected. A similar result is found for 
the oscillating case. A fair agreement is found between experimental and numerical 
data during flow acceleration, but during flow reversal remarkable (about 15 %) 
deviations are found. The observed insensitivity of the transducer during flow 
reversal is quite well predicted by Pedley’s model. Finally, the performance of the 
probe may be improved somewhat by a decrease in cathode length and 
cathode-anode distance. 

1. Introduction 
The use of an  electrochemical technique to measure wall shear rates in fluid flow 

is based on a diffusion-dependent electrochemical reaction at the surface of an 
electrode. The net mass flux to the electrode is converted into a measurable electric 
current, which in turn can be interpreted in terms of wall shear rate. A thorough 
review of the technique is provided by Mizushina (1971). The main advantages of the 
electrochemical technique are that the transducer is easy to manufacture, that  the 
wall shear rates can be measured locally (electrode diameter < 1 mm), that the fluid 
flow is not disturbed and that calibration is not necessary. However, the technique 
is restricted to fluids and only a few electrolyte solutions are usable. Besides, the 
LBvQque equation for the relation between mass flux and shear rate is often used, 
which only holds for (quasi-) steady fluid flow. 

The electrochemical technique is quite commonly used in fluid dynamics. For 
example, Choi, Talbot & Cornet (1979) and Talbot & Wong (1982) applied it 
successfully to the measurement of wall shear stress distributions in a circular bend 
at steady flow conditions. Lutz et al. (1977) and Hong, Shu & Hwang (1985) used the 
technique to investigate the steady flow situations in models of human arteries. Most 
often in the experiments a circular probe is used and a large number of theoretical 
efforts are made to describe adequately the behaviour of the electrochemical or the 
similar hot-film probes in steady flow. The leading term of the steady boundary 
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solution was derived by Ldv4que (1928), leading to the widely used one-third power 
law between the local wall shear rate and the values of the Shenvood or Nusselt 
number. The importance of the neglected axial diffusion term in steady flow 
conditions was first analysed by Ling (1963). Also, numerical solutions of the steady 
convection-diffusion equation have been carried out for strip-shaped films by Cognet 
(1971) and for disk-shaped films by Py  & Gosse (1969). Recently, Phillips (1990) 
extended this work by an analytical study of heat transfer a t  various Pdclet numbers 
from isothermal circular disk-shaped films. Stone (1989) used his estimates for the 
neglected flux from the edge regions to develop a correction to the asymptotic 
expressions. 

Also the dynamical behaviour of the transducer in situations with a small- 
amplitude sinusoidal modulation of steady flow attracted a lot of scientific interest. 
Fortuna & Hanratty (1971) and Mao & Hanratty (1985) determined theoretically the 
transfer function of the response of the probe to  the imposed oscillations, while 
Mitchell & Hanratty (1963) used the method for the analysis of turbulence close to 
the wall. More recently, Talbot & Steinert (1987) measured the frequency response 
for a laminar, sinusoidally oscillating flow superimposed on a steady flow in a straight 
tube, while Deslouis et al. (1990) tested the theoretical predictions very carefully by 
using a rotating disk. 

The dynamical behaviour of the transducer in flow situations where low-frequency 
high-amplitude fluctuations in the wall shear rate are present is much less 
investigated. Experimental information is gained by Seed & Wood (1970) and Clark 
(1974), who performed unsteady calibration experiments with a hot-film anemometer 
in flow situations with temporary shear reversal a t  the probe wall. Pedley (1976) 
derived an asymptotic expansion solution for the heat transfer of a hot film in 
pulsatile flow and combined this with a purely diffusive solution during shear 
reversal. Comparison of Pedley’s model with the results of Clark revealed that the 
shape of the predicted curve of heat transfer against time agrees very well with the 
experimental one, but its phase shows a lead of approximately in over the 
experimental curve. It was concluded by Pedley that the most probable cause of the 
unwanted phase lead lies in the three-dimensional nature of the velocity and 
temperature fields over the hot film, because the probe is not mounted on a flat plate 
but on a cylinder, and because diffusion in the cross-stream direction tends to 
increase the ‘thermal inertia’ of the probe. The same flow situation is investigated 
by Kaiping (1983), who examined numerically the unsteady forced convective heat 
transfer from a hot film in among others, reversing shear flow. He concluded that in 
reversing flow a considerable influence of the thermal wake can be seen and that 
about half of the phase lag between Pedley’s solution and Clark’s experiments has to 
be attributed to the strong simplifications in Pedley’s model. Finally, Mao & 
Hanratty (1991) extended the numerical work of Kaiping and tried to solve the 
inverse problem of calculating the variation of wall shear rate from given mass 
transfer rate with time. 

The aim of the present study is to analyse the dynamical response of the 
electrochemical wall shear rate transducer through a combined experimental, 
numerical and analytical approach and to  evaluate this technique for use in flow 
situations with severe backflow (like, for example, in models of arterial bifurcations). 
The experiments are performed with a ferri- and ferrocyanide redox couple in a 
straight tube with fully developed unsteady flow. To prevent flow distortions the 
electrochemical transducer is flush-mounted in the wall. In  order to describe the 
relation between fluid flow and mass transport for this particular case, the unsteady 
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FIGURE 1 .  Diagram of the electrochemical wall shear rate transducer. 

convection4iffusion equation is solved numerically for flow waveforms with and 
without severe backflow. As a test of the experimental set-up and the numerical 
model, the static response of the transducer is first determined. Next, unsteady flows 
with a variable mean component are investigated and the results are compared with 
the analytical quasi-steady LQvbque solution and in some cases with Pedley’s model. 
Finally, a concise parameter variation study was performed to improve the 
transducer for measurements during flow reversal. 

2. Basic equations 
In figure 1 a schematical drawing is given of the problem to be solved. A mixture 

of ferricyanide and ferrocyanide in sodium hydroxide is used as the fluid. The 
chemical reaction a t  the electrodes is described as: 

Cathode - Fe(CN):-. Fe(CN):- + e-, 
Anode 

The conversions of ferricyanide and ferrocyanide that take place between the 
cathode and the anode maintain a constant concentration of both chemicals. The ion 
flux can be determined by measuring the electric current flowing between the 
electrodes (Hanratty & Campbell 1983). According to Faraday, 

i J * N U  ==, I 

where N is the local ion flux per unit area, I is the measured current, A is the surface 
area of the cathode and F is the Faraday’s constant. Commonly the ion flux is 
expressed by the Sherwood number, defined as 

L I  
COD AF 

Sh=-- (3) 

Here C, is the bulk concentration of ferricyanide ions, D its diffusion coefficient and 
L the length of the probe. In our case a circular probe is used, but for comparison of 
the experiment with the two-dimensional theoretical models it will be treated as a 
rectangle with an effective length in the flow direction (Hanratty & Campbell 1983), 

Le = 0.8139d, (4) 
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with d the diameter of the electrode. The major drawback of defining such an 
effective length is that  in its derivation the influence of tangential diffusion (in the 
direction perpendicular to the flow) is neglected. As stated earlier by Reiss & 
Hanratty (1963) the validity of such an assumption for a circular electrode is 
uncertain, since the fluid flowing over the centreline of the electrode will have a 
longer contact time than fluid flowing over the electrode near its edges. However, 
numerical analysis of, among others, Py  & Gosse (1969) demonstrated that (4) may 
be used provided that the mass related PBclet number (2) is larger than lo3. For 
smaller Z-values corrections terms have been derived by Phillips (1990) and Stone 
(1989). 

The diffusion of the ferricyanide to  the cathode is governed by the shear-rate- 
dependent boundary layer 8, at  the surface of the cathode. This mass transport 
problem is described by the convection-diffusion equation for the reacting ions 
(ferricyanide) in the fluid mixture. For the two-dimensional fully developed laminar 
boundary flow, as defined in figure 1,  this equation reads 

-++(t) ac y- ac =”[;+!$I, 
at ax ( 5 )  

with C the molar concentration of the ferricyanide ions in the mixture and S(t) the 
time-dependent velocity gradient at the wall. The linearization of the velocity profile 
(u = Sy) within the concentration boundary layer is justified as the Schmidt number 
Sc z 2400 is large. 

Introducing the dimensionless variables [of O( l)], 

and omitting the accents yields 

ac ac za2c a2c 

at ax ax2 ay2 . 
Sr-+S(t)y- = Z-S-+-  (7) 

Here Sref is a characteristic or the mean value of the velocity gradient, w is the 
angular frequency, Z is the PBclet number for mass transfer and Sr is the Strouhal 
number. The velocity gradient reads in dimensionless form : 

This implies that when p > I ,  backflow is involved. For quasi-steady flow conditions 
(Sr -4 1)  and large Z-values the solution of (7) reduces to the so-called LBv6que 

S(t)  = 1 +psint.  (8) 

and 
Sh(t) = Sh,dx = 0.808[y]. S(t) L2 t c 

According to Ling (1963) axial diffusion (in the direction of the flow) can be neglected 
for Z > 500. To find whether the concise relation (10) between measured mass flux 
[Sh(t)] and velocity gradient [S(t)] can also be used under unsteady flow conditions, 
this solution will be compared with the numerical solution of the unsteady 
convection-diffusion equation. 
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Finally, some of the numerical solutions will also be compared with the results of 
the analytical model derived by Pedley (1976). He described the dynamical 
behaviour of a hot-film anemometer under unsteady flow conditions with a 
temporary backflow at the wall. He also assumed a two-dimensional boundary layer, 
in which X(t) is positive for t < 0 and changes its sign at  t = 0. The axial diffusion 
terms were neglected. Pedley assumed that long before reversal ( t  < -tl)  the flow at 
a point on the plate will be quasi-steady and that long after reversal (t > t,) the flow 
will be quasi-steady again, but with the leading edge at the other end of the plate. 
In between ( - t ,  < t < t,)  the flow is governed approximately by the diffusion 
equation, but t ,  and t, are not a priori known. He chose t ,  such that the displacement 
thickness of the boundary layer remains constant at  t = -t,. Similarly t, was 
determined. Another critical assumption in this model is that the transition between 
a quasi-steady and a purely diffusive solution is not gradual but abrupt. The validity 
of this model will be investigated by comparing Pedley’s results with the 
corresponding solutions of the complete set of equations. To that end it has to be 
mentioned that Pedley described the form of shear variation in dimensionless form 

S(t)  = 1 +a, cos w,, t ,  (11) 
which is related to our situation by a, = /3 and w1 = Sr. Pedley’s predicted values 
were taken directly from his figure 3 and shifted with in before comparing with our 
results. 

by 

3. Numerical model 
Equation (7) has been solved with the use of a standard finite-element method 

(Cuvelier, Segal & van Steenhoven 1986). The mathematical domain and the 
boundary conditions are shown in figure 2(a). As an approximation for C ( x ,  y , t )  a 
linear combination of time-independent basis functions is taken : 

The basis functions are constructed such that 

$t(X,) = $tj with X j  = (%Y,), (13) 

at every chosen nodal point x,. The quantities CJt) then denote the approximation 
of the concentration in nodal point xt. The domain SZ is divided into triangular 
elements, see figure 2 ( b ) ,  with three nodal points. The corresponding basis functions 
are linear functions of the space coordinates. Theoretically, the spatial accuracy of 
approximation is O(h2), where h is the maximal diameter of the element. 

Using Galerkin’s method, (7) is transformed into the following set of linear 
equations 

where C is the vector of unknown concentration values, C is its time derivative, 
while the matrices M and S are defined as: 

XrMC+S(Z) c = 0, (14) 

r 
Mtj = $t$,dxdy (i = 1 ,..., N ,  j= 1 ,..., N ) ,  J, 

X,, = dxdy (i = 1, ..., N ,  j = 1 ,..., N ) .  

20 
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The construction of the system of equations is carried out with the finite element 
package SEPRAN (Segal 1984). 

The time derivative in the discrete equation (14) is approximated by a finite 
difference &method (Van de Vosse et al. 1986). The equation then becomes: 

with 

and 

c n + e  = e c n + i  + (1  - e) c n ,  

Sn+B = w + l +  (1 - e) s n ,  

Cn = C(nAt), 
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FIGURE 3. The influence of (a) the number of nodal points ( N )  at steady flow and ( b )  the number 
of timesteps per flow period (T) at unsteady flow on the local (Sh,) and total Sherwood (Sh) 
numbers. 

For 8 = 0 (Euler-explicit) and 8 = I (Euler-implicit) the global error of the scheme 
is O(At), while for 8 = 0.5 (Crank-Nicolson) a second-order accuracy [O(At2)] is 
expected. For 0 < 8 < 0.5 the scheme is only conditionally stable. As the initial 
condition the steady-state solution for S = 1, see (8 ) ,  is used. To damp disturbances 
induced by the transition from the initial state, in the first period of the flow 
oscillation the equations are integrated with the Euler-implicit scheme after which 
the Crank-Nicolson scheme is used. The calculations are stopped when the differences 
in the solution at the last timestep of two succeeding flow cycles are smaller than a 
prescribed value. Normally three periods appear to be sufficient. 

To find the optimum values or conditions for mesh distribution, boundary 
condition at &,, degree of interpolation polynomial, number of elements and number 
of timesteps, some numerical test calculations were first carried out. Some typical 
examples for Z = lo4 are shown in figure 3, where the number of elements and 
timesteps are varied. I n  figure 3 ( a )  the numerical solution of the steady 
convection4iffusion equation without the axial diffusion term is solved and 

20-2 
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compared to the LBvhque solution using (9). As expected, the major differences occur 
near the edges where a singularity in boundary conditions is present. Owing to the 
local mesh refinements a t  the leading edge, which makes an O( 1) contribution to the 
total Sherwood number, the numerical error in case of the finest mesh distribution 
is quite small (x3 YO). Hence, for the actual calculations in the steady case 7680 
elements with 3961 nodal points were used. To reduce the amount of calculation 
time, in the unsteady case 1920 elements with 1021 nodal points and 20 timesteps 
during a flow cycle were applied. The calculations were performed on a PRIME 

minicomputer on which for the unsteady case about 2 hours cpu-time was needed. 

4. Experimental methods 
Figure 4 shows a diagram of the fluid circuit. A gear pump (Verder 2032) was used 

to create the steady-flow component while the unsteady-flow component was 
generated by a plunger pump. To ensure a pure sinusoidal flow modulation, the ratio 
of plunger displacement to driveshaft length was chosen to be less than 0.01. Before 
entering the measurement section, the fluid passed through a long circular tube both 
having an internal diameter of 9.8 mm. The length of the tube (125 diameters) was 
chosen such that even a t  the highest Reynolds number ( x 1500) the fluid flow was 
fully developed there (Schlichting 1979). To eliminate the influence of ambient 
temperature variations the circulating fluid was kept a t  a constant temperature of 
26 "C using a thermostat. As test fluid, demineralized water was used in which 0.01 M 

potassium ferricyanide, 0.01 M potassium ferrocyanide and 1 M sodium hydroxide 
was dissolved. The density of the solution was calculated to  be 1.056 x lo3 kg m-3. 
For the dynamic viscosity and diffusivity of the ferricyanide solution empirical 
temperature-dependent relationships of Bazan & Arvia (1965) were used yielding the 
values of T,I = 1.086 m2 s-l, respectively. The 
system was purged with nitrogen gas to reduce the oxidation of the test fluid. 

The cathode of the transducer was a circular nickel electrode (diameter 1 mm) 
flush-mounted in the wall of the measurement section. The anodes were also made of 
nickel and were placed 60 mm upstream and downstream of the cathode. The larger 
surface area of the anode relative to  the cathode (150 : 1) assured that the current to  
be measured was limited by the reaction a t  the cathode. Between the cathode and 
anode a constant voltage difference (0.5V) was applied. It was verified that the 
cathode current, measured by the voltage difference over a reference resistor, had 
reached its limiting value so that the process was indeed diffusion limited. The 
volume flow was measured electromagnetically (Skalar Transflow 601). The mass 
flux and flow rate signals were fed into a mini-computer (PRIME 750) using a sample 
rate of 100 Hz. To increase the measuring accuracy the results were averaged over 
10 samples, or in the unsteady case over 10 flow cycles. A typical result is given in 
figure 5. Owing to the relatively large amplitude of the unsteady flow component the 
response of the wall shear rate transducer during flow acceleration and deceleration 
differs significantly. Next, the measured flow rate signal was used to calculate the 
wall shear rates, assuming fully developed pipe flow (Uchida 1956), and to calculate 
the Sherwood numbers on the basis of the LBvhque solution using (10). Finally, the 
experimentally (equation (3)) and numerically (left-hand part of (10)) determined 
Sherwood numbers were plotted with the LBveque reference solution as a function of 
time for each set of flow conditions. 

The experiments were performed under steady and unsteady flow conditions. In  
the steady case the Reynolds number, defined as Re = UD/v with U the mean 

kg s-l m-l and D = 6.68 
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FIGURE 4. Diagram of the experimental set-up. C = Cathode, A = Anode, Q = Flow meter, R = 
Reservoir, PI = Gear pump, P, = Plunger pump. 
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FIGURE 5. Typical response of the transducer ( I )  at a pulsating flow rate ( Q ) .  

0 

velocity in, and D the diameter of, the measurement section and v the kinematic 
viscosity, was varied between 20 and 1500. According to (6) and under the 
assumption of Poiseuille flow the corresponding 2-value varies between about 2 x lo3 
and 2 x lo5. For the unsteady case the Strouhal number, also defined by (6), was 
varied between 0.66 and 1.35, while the amplitude parameter (see (8)), was varied 
between 0.48 and 1.72. Owing to the limitations in the experimental set-up the 
amplitude ratio and the Strouhal number were not varied independently of each 
other. As a consequence the 2-value then varies slightly, although in all situations 
the magnitude order was lo5. 

5. Results 
To test the numerical and experimental method, first some steady flow analyses 

were performed. In figure 6(a )  the numerical data for the cases with and without 
axial diffusion are compared to the LhvBque solution for 2 values between 100 and 
2 x lo5. Even for small 2-values the influence of axial diffusion is small. As expected, 
the maximal difference occurs a t  the lowest 2-value and amounts to about 5 %. For 



44- 

Sh 

3.6 - 

I I I I I I 

Z 

... 

10' 1 o2 103 104 105 

z 

Y ' 

FIQURE 6. Comparison of the (a) numerical and ( b )  experimental responses of the transducer with 
the Uv6que solution at steady flow. Symbols : 0 ,  numerical without axial diffusion ; A, numerical 
with axial diffusion ; 0 ,  experiments ; -, LBv6que solution. The Sherwood and 2-number values 
are both plotted on a logarithmic scale. 

the whole range the differences between the numerical and analytical results appear 
to be smaller than 5 % .  The experimental results are compared with the LBveque 
solution in figure 6 ( b ) .  For Z > lo4 the measured mass flux values are about 8% 
smaller than the LQveque solution, probably owing to the uncertainty in the value 
of the diffusivity. The discrepancies between theory and experiment for Z < lo4 are 
probably due to the tangential diffusion as suggested by Hanratty & Campbell (1983) 
and estimated among others by Phillips (1990) and Stone (1989). However, it has to 
be stated that the consistently observed deviation at Z = lo3 (about 20%) is much 
larger than predicted by Phillips by his equation (33) (about 3%) and that other 
sources like measurement inaccuracies at  low Z-values may not be neglected. 
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FIG RE 7.  A, Numerical, and 0 ,  experimental responses of the transducer a t  unstead flow in 
cases without flow reversal. (a) /3 = 0.48, Sr = 0.66; ( b )  /3 = 0.97, Sr = 0.93. As a reference also 
-, the L4v6que solution is given. 

Next, time-dependent fluid flow was investigated. In figure 7 the experimental, 
numerical and analytical Sherwood values as a function of time are shown for an 
oscillatory flow rate without backflow (/3 < 1). As expected, the differences between 
the values for the unsteady measurement and calculations with the steady LBvhque 
solution are the highest (maximal 45%) at the higher /3 and Sr-numbers (figure 7 b ) .  
For the lower values of these parameters (see figure 7 a )  a maximal difference of about 
11 YO is found. In the high-amplitude flow case a relatively large difference (about 
16%) is observed at minimal mass flux between the experimental and numerical 
data, which is probably primarily a consequence of the tangential diffusion discussed 
earlier. Also, the relatively coarse element distribution and a not-completely- 
sinusoidal plunger motion in the experiments may be attributed to this. In figure 8 
the results are given for an oscillating flow rate, where during a part of the flow cycle 
severe backflow occurs. The behaviour then differs completely from the Le'vdque 
solution. For the low shear rate values the mass flux is higher than expected for the 
steady case, while in the maxima of the curves the differences are much smaller. The 
insensitivity of the transducer during flow reversal is probably partly caused by the 
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FIQURE 8. A, Numerical, and 0 ,  experimental responses of the transducer at unsteady flow in 
cases with flow reversal (a) p = 1.31, Sr = 0.87; ( b )  /I' = 1.49, Sr = 1.35; (c) /S = 1.72, Sr = 1 .  As a 
reference also -, the LthGque solution is given. 

dominant influence of diffusion over convection during that phase at  low /3- 1 values 
and partly by the fact that fluid with a relatively low potassium ferricyanide 
concentration (from the so-called concentration wake) is carried back over the 
cathode during shear reversal. The agreement between experimental and numerical 
data is fair, especially during flow acceleration, and also the mass flux plateau during 
flow reversal is predicted adequately. The largest deviations (about 20 %) occur 
during flow reversal and are again expected to be due to tangential diffusion. This is 
supported by the fact that an increase in Strouhal number leads to a considerable 
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FIGURE 9. Comparison of A, numerical data with ---, those of Pedley (1976) (a) B = 0.9, 
Sr = 1 ; ( b )  B = 2, Sr = 1 .  As a reference also -, the LBvdque solution is given. 

reduction of the observed deviation (compare figures 8 b  and 8a) .  Numerical results 
are also compared with Pedley’s (1976) data. The Sherwood values found are shown 
in figure 9 for Sr = 1 and the cases without and with backflow. As also found by 
Kaiping (1983), during flow reversal a phase lag of about in is observed between 
Pedley’s predictions and our numerical results. Besides, the mass flux at maximal 
shear rate as predicted by Pedley’s model is, for the high-amplitude case, somewhat 
higher than the one obtained from the numerical model. Anyhow, despite the severe 
simplifications made, the analytical model appears to predict the actual behaviour 
quite well. 

Finally, to improve the transducer design the numerical model was used to 
perform a concise parameter variation study. As during flow reversal the transducer 
is almost insensitive to shear variations, attention was focused on the flow situation 
with /3= 1.72. The LBvhque solution was taken as reference. First, the Strouhal 
number was varied. The results are shown in figure 10 (a).  As expected, the lower the 
Strouhal number, the better the numerical mass flux values follow the steady 
LBvhque solution. This also implies (see (6)) that the performance of the transducer 
improves by lowering the cathode length or by using a fluid with a higher diffusivity. 
A third improvement is expected when the ion concentration in the fluid which 
reverses above the cathode exhibits normal values. This may be realized by 
shortening the cathodeanode distances and figure 10 ( b )  shows some results. Indeed, 
some, but not spectacular, changes in the numerically predicted mass flux curves are 
observed. 
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FIGURE 10. The influence of (a) the Strouhal number and (b) the anode-cathode distance on the 
response of the transducer at unsteady flow. L corresponds to the probe length. 

6. Concluding discussion 
From the present study it is concluded that an electrochemical wall shear rate 

probe can be successfully applied to flow situations where low-frequency, high- 
amplitude fluctuations are present. Besides, its dynamical behaviour can be quite 
well analysed using a standard Galerkin finite-element method. The differences 
between theory and experiment are probably due to uncertainty in the physical 
parameters, the occurrence of tangential diffusion and a too coarse element 
distribution. More specifically, in this study a circular probe was used and its 
effective length for two-dimensional analyses was calculated from equation (4). 
Although generally speaking this relation proved to be satisfactory, especially a t  
small Z-values, three-dimensional effects should not be neglected. Therefore, it is 
worthwhile extending the theories of Phillips (1990) and Stone (1989) to the unsteady 
flow case. Nevertheless, from the present study a good picture of the transducer 
performance is gained. Especially at high Strouhal numbers and when flow reversal 
occurs, the response is completely different from the quasi-steady LBveque solution. 
Based upon the oscillating flow experiments of Seed & Wood (1970) and Clark (1974) 
with a hot-film anemometer, Pedley (1976) mentioned Sr 2 0.2 as the value where 
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FIQURE 11.  0 ,  Experimental response of the transducer at purely oscillating flow. As a 
reference also -, the Gv6que solution is given. 

such a relation for calibration cannot be used, and this finding agrees quite well with 
our result. 

The insensitivity of the transducer during flow reversal a t  high Strouhal values, is 
quite well predicted by Pedley’s model and is caused by the dominant diffusion over 
convection process at the cathode and the reversal of fluid from the concentration 
wake. The response may be improved somewhat by decreases in the cathode length 
and in the distance between cathode and anode. Also an increase of the diffusivity 
(for example in case of a heat transfer probe) is favourable for the sensitivity of the 
transducer. However, the advantage of a higher thermal diffusivity ( K  = 
1.4 x lo-’ m2 s-l) than mass diffusivity (D = 7 x lO-’O m2 s-l) can only be used a t  
higher shear rate values, as otherwise the avoidance of tangential diffusion will lead 
to a compensating larger probe design (Talbot & Steinert 1987). 

Beside the probe insensitivity during shear reversal the response is also strongly 
frequency dependent (Talbot & Steinert 1987 ; Deslouis et al. 1990). This makes the 
transducer impractical for the investigation of time-dependent fluid flows with severe 
backflow, like those occurring in human arteries. On the other hand, in the case of 
a purely oscillating high-amplitude flow, like for example the situation shown in 
figure 11, the transducer may be useful. For those situations a further analysis of 
probe design and calibration relationship and interpretation of results (Ma0 & 
Hanratty 1991) is worthwhile. 

We thank P. J. B. Willems for his numerical contributions and L. H. G. Wouters 
and J. H. Onink (AVC) for technical assistance. 
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